Binary tree postorder traversal [Morris Traversal, Stack]¶
Time: O(N); Space: O(1); hard
Given a binary tree, return the postorder traversal of its nodes’ values.
Example 1:
1
/ \
2 3
Input:root = {TreeNode} [1,2,3]
Output:{TreeNode} [2,3,1]
Example 2:
1
\
2
/
3
Input: root = {TreeNode} [1,#,2,3]
Output: {TreeNode} [3,2,1]
Note:
Recursive solution is trivial, could you do it iteratively?
[11]:
class TreeNode(object):
def __init__(self, x):
self.val = x
self.left = None
self.right = None
1. Morris Traversal Solution¶
[12]:
class Solution1(object):
'''
Time: O(N)
Space: O(1)
'''
def postorderTraversal(self, root):
'''
:type root: TreeNode
:rtype: List[int]
'''
dummy = TreeNode(0)
dummy.left = root
result, cur = [], dummy
while cur:
if cur.left is None:
cur = cur.right
else:
node = cur.left
while node.right and node.right != cur:
node = node.right
if node.right is None:
node.right = cur
cur = cur.left
else:
result += self.traceBack(cur.left, node)
node.right = None
cur = cur.right
return result
def traceBack(self, frm, to):
result, cur = [], frm
while cur is not to:
result.append(cur.val)
cur = cur.right
result.append(to.val)
result.reverse()
return result
[13]:
s = Solution1()
root = TreeNode(1)
root.left = TreeNode(2)
root.right = TreeNode(3)
assert s.postorderTraversal(root) == [2, 3, 1]
root = TreeNode(1)
root.right = TreeNode(2)
root.right.left = TreeNode(3)
assert s.postorderTraversal(root) == [3, 2, 1]
2. Stack Solution¶
[14]:
class Solution2(object):
'''
Time: O(N)
Space: O(H)
'''
def postorderTraversal(self, root):
"""
:type root: TreeNode
:rtype: List[int]
"""
result, stack = [], [(root, False)]
while stack:
root, is_visited = stack.pop()
if root is None:
continue
if is_visited:
result.append(root.val)
else:
stack.append((root, True))
stack.append((root.right, False))
stack.append((root.left, False))
return result
[15]:
s = Solution2()
root = TreeNode(1)
root.left = TreeNode(2)
root.right = TreeNode(3)
assert s.postorderTraversal(root) == [2, 3, 1]
root = TreeNode(1)
root.right = TreeNode(2)
root.right.left = TreeNode(3)
assert s.postorderTraversal(root) == [3, 2, 1]
See also:¶
https://leetcode.com/problems/binary-tree-postorder-traversal
https://www.lintcode.com/problem/binary-tree-postorder-traversal
Related problems:¶
https://www.lintcode.com/problem/binary-tree-preorder-traversal